Mark Rounsevell
Mark Rounsevell is Professor of Land Use Change at the Karlsruhe Institute of Technology (Institute of Geography & Geo-ecology) and Head of IFU’s Land Use Change & Climate Research Group. His research focuses on the human dimensions of environmental change, including the analysis of socio-ecological systems, land use and land cover change, the impacts of climate change on natural resources, including biodiversity, and the role of the land system in climate change mitigation. He works with social simulation models to undertake experiments on human-environment interactions using a number of different modelling approaches from local to global scales, for the past, present and future with a focus on environmental change scenarios. This includes the suite of CRAFTY agent-based, land system models (https://landchange.imk-ifu.kit.edu/CRAFTY), the LandSyMM framework (https://landsymm.earth/) and the HILDA+ historic land cover reconstruction (https://landchange.imk-ifu.kit.edu/hilda). He is:
- Co-chair of the Future Earth AIMES project (Analysis, Integration & Modelling of the Earth System) (https://aimesproject.org/);
- Co-chair of the Intergovernmental Platform on Biodiversity & Ecosystem Services (IPBES) regional assessment for Europe & Central Asia;
- Lead author to the 2nd, 3rd, 4th and 5th Assessment Reports of Working Group II of the Intergovernmental Panel on Climate Change (IPCC);
- Lead author to the IPCC Special Report on Climate Change & Land;
- Coordinating Lead Author to the IPBES assessment on the interlinkages among biodiversity, climate, water, food, & health (the Nexus assessment).
He has had prominent roles in a number of international research projects including, amongst others, the European Commission funded:
- OPERAs project (OPerationalizing Ecosystem Research Applications, www.operas-project.eu);
- LUC4C project (Land-use change: assessing the net climate forcing, and options for climate change mitigation and adaptation, luc4c.eu)
- IMPRESSIONS project (Impacts and risks from high-end scenarios: Strategies for innovative solutions, www.impressions-project.eu);
- ForestPaths project (Co-designing holistic forest-based policy pathways for climate change mitigation, https://forestpaths.eu/);
- CLIMB-FOREST project (CLImate Mitigation and Bioeconomy pathways for sustainable FORESTry, https://www.climbforest.eu/);
- BIONEXT project (The biodiversity nexus: transformative change for sustainability, https://www.bionext-project.eu/);
- wildE project (Climate-smart rewilding: ecological restoration for climate change mitigation, adaptation and biodiversity support in Europe, https://www.wilde-project.eu/);
- MOSAIC project (Joined-up land use strategies tackling climate change and biodiversity loss).
Orcid ID: 0000-0001-7476-9398
Email: mark.rounsevell@kit.edu
Telephone: +49 8821 183 198
Publications Mark Rounsevell
Advanced photovoltaic technology can reduce land requirements and climate impact on energy generation
2024. Communications Earth & Environment, 5, Article no: 586. doi:10.1038/s43247-024-01754-4
The EU’s new anti-deforestation law has severe loopholes that could be exploited by the forthcoming EU-MERCOSUR trade agreement
2024. Environmental Research Letters, 19 (9), 091005. doi:10.1088/1748-9326/ad69ab
Corrigendum to “Understanding the role of biodiversity in the climate, food, water, energy, transport and health nexus in Europe” [Sci. Total Environ. 925 (2024) 171692]
2024. Science of The Total Environment, 929, Art.-Nr.: 172480. doi:10.1016/j.scitotenv.2024.172480
Typology analysis of Egyptian agricultural households reveals increasing income diversification and abandonment of agricultural activities
2024. Agricultural Systems, 218, Art-Nr.: 104000. doi:10.1016/j.agsy.2024.104000
Understanding the role of biodiversity in the climate, food, water, energy, transport and health nexus in Europe
2024. Science of The Total Environment, 925, Art.-Nr.: 171692. doi:10.1016/j.scitotenv.2024.171692
Bioenergy in Europe is unlikely to make a timely contribution to climate change targets
2024. Environmental Research Letters, 19 (4), Art-Nr.: 044004. doi:10.1088/1748-9326/ad2d11
Assessing the impact of strictly protecting 30%–50% of global land on carbon dynamics in natural and agricultural ecosystems
2024. PLANTS, PEOPLE, PLANET. doi:10.1002/ppp3.10612
An assessment of future rewilding potential in the United Kingdom
2024. Conservation Biology, 38 (4), Art.-Nr.: e14276. doi:10.1111/cobi.14276
Short-sighted policies are fuelling Brazilian deforestation
2023. Nature, 624 (7992), 522. doi:10.1038/d41586-023-04057-4
Toward quantification of the feasible potential of land-based carbon dioxide removal
2023. One Earth, 6 (12), 1638–1651. doi:10.1016/j.oneear.2023.11.011
Modelling the global photovoltaic potential on land and its sensitivity to climate change
2023. Environmental Research Letters, 18 (10), Art.-Nr.: 104017. doi:10.1088/1748-9326/acf86f
Exploring the effects of protected area networks on the European land system
2023. Journal of Environmental Management, 337, 117741. doi:10.1016/j.jenvman.2023.117741
Three billion new trees in the EU’s biodiversity strategy: low ambition, but better environmental outcomes?
2023. Environmental Research Letters, 18 (3), Art.-Nr.: 034020. doi:10.1088/1748-9326/acb95c
The drivers and impacts of Amazon forest degradation
2023. Science, 379 (6630), Art.-Nr.: eabp8622. doi:10.1126/science.abp8622
Understanding the role of biodiversity in the climate, food, water, energy, transport and health nexus in Europe
2023. California Digital Library (CDL). doi:10.31223/x5w10t
Mapping the shared socio-economic pathways onto the Nature Futures Framework at the global scale
2023. Sustainability Science. doi:10.1007/s11625-023-01415-z
Assessing the quality of land system models: moving from valibration to evaludation
2023. Socio-environmental Systems Modelling, 5, Art.Nr.: 18434. doi:10.18174/sesmo.18434
Creating quantitative scenario projections for the UK shared socioeconomic pathways
2023. Climate Risk Management, 40, Art.-Nr.: 100506. doi:10.1016/j.crm.2023.100506
Making protected areas effective for biodiversity, climate and food
2023. Global Change Biology, 29 (14), 3883–3894. doi:10.1111/gcb.16664
Agent‐Based Modeling of Alternative Futures in the British Land Use System
2022. Earth’s Future, 10 (11), Art.: e2022EF002905. doi:10.1029/2022EF002905
Downscaling population and urban land use for socio-economic scenarios in the UK
2022. Regional Environmental Change, 22 (3), 106. doi:10.1007/s10113-022-01963-7
How more sophisticated leaf biomass simulations can increase the realism of modelled animal populations
2022. Ecological Modelling, 471, Artkl.Nr.:110061. doi:10.1016/j.ecolmodel.2022.110061
How different COVID-19 recovery paths affect human health, environmental sustainability, and food affordability: a modelling study
2022. The Lancet Planetary Health, 6 (7), e565–e576. doi:10.1016/S2542-5196(22)00144-9
Improving regional applicability of the UK shared socioeconomic Pathways through iterative participatory co-design
2022. Climate Risk Management, 37, Artkl.Nr.: 100452. doi:10.1016/j.crm.2022.100452
The elephant in the room is really a cow: using consumption corridors to define sustainable meat consumption in the European Union
2022. Sustainability Science. doi:10.1007/s11625-022-01235-7
Identifying data challenges to representing human decision-making in large-scale land-use models
2022. Mapping and Forecasting Land Use, 115–126, Elsevier. doi:10.1016/B978-0-323-90947-1.00013-2
The effects of climate and land use on British bumblebees: Findings from a decade of citizen‐science observations
2022. Journal of Applied Ecology, 59 (7), 1837–1851. doi:10.1111/1365-2664.14191
Global and regional health and food security under strict conservation scenarios
2022. Nature Sustainability, 5, 303–310. doi:10.1038/s41893-021-00844-x
Global land use changes are four times greater than previously estimated
2021. Nature Communications, 12 (1), Artikel-Nr.: 2501. doi:10.1038/s41467-021-22702-2
Restoring Degraded Lands
2021. Annual review of environment and resources, 46, 569–599. doi:10.1146/annurev-environ-012320-054809
Identifying uncertainties in scenarios and models of socio-ecological systems in support of decision-making
2021. One Earth, 4 (7), 967–985. doi:10.1016/j.oneear.2021.06.003
How can social–ecological system models simulate the emergence of social–ecological crises?
2021. People and nature, 3 (1), 88–103. doi:10.1002/pan3.10167
Bioenergy for climate change mitigation: Scale and sustainability
2021. GCB Bioenergy, 13 (9), 1346–1371. doi:10.1111/gcbb.12863
How modelling paradigms affect simulated future land use change
2021. Earth System Dynamics, 12 (1), 211–231. doi:10.5194/esd-12-211-2021
The global environmental paw print of pet food
2020. Global environmental change, 65, Art.-Nr.: 102153. doi:10.1016/j.gloenvcha.2020.102153
Europe’s Green Deal offshores environmental damage to other nations
2020. Nature <London>, 586 (7831), 671–673. doi:10.1038/d41586-020-02991-1
Which practices co‐deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification?
2020. Global change biology, 26 (3), 1532–1575. doi:10.1111/gcb.14878
A biodiversity target based on species extinctions
2020. Science, 368 (6496), 1193–1195. doi:10.1126/science.aba6592
Impacts of future agricultural change on ecosystem service indicators
2020. Earth System Dynamics, 11 (2), 357–376. doi:10.5194/esd-11-357-2020
Does Climate Change Communication Matter for Individual Engagement with Adaptation? Insights from Forest Owners in Sweden
2020. Environmental management, 65 (20), 190–202. doi:10.1007/s00267-019-01247-7
Successes and shortcomings of climate change communication: insights from a longitudinal analysis of Swedish Forest owners
2020. Journal of environmental planning and management, 63 (7), 1177–1195. doi:10.1080/09640568.2019.1646228
Operationalising ecosystem services in Europe [Editorial]
2019. Regional environmental change, 19 (8), 2143–2149. doi:10.1007/s10113-019-01560-1
The role of global dietary transitions for safeguarding biodiversity
2019. Global environmental change, 58, Article no: 101956. doi:10.1016/j.gloenvcha.2019.101956
Transforming agricultural land use through marginal gains in the food system
2019. Global environmental change, 57, 101932. doi:10.1016/j.gloenvcha.2019.101932
Why the US–China trade war spells disaster for the Amazon
2019. Nature <London>, 567 (7749), 451–454. doi:10.1038/d41586-019-00896-2
Make EU trade with Brazil sustainable
2019. Science, 364 (6438), 341. doi:10.1126/science.aaw8276
Societal breakdown as an emergent property of large-scale behavioural models of land use change
2019. Earth System Dynamics, 10 (4), 809–845. doi:10.5194/esd-10-809-2019
Implementing land-based mitigation to achieve the Paris Agreement in Europe requires food system transformation
2019. Environmental research letters, 14 (10), Article: 104009. doi:10.1088/1748-9326/ab3744
Beyond land cover change: towards a new generation of land use models
2019. Current opinion in environmental sustainability, 38, 77–85. doi:10.1016/j.cosust.2019.05.002
Achievement of Paris climate goals unlikely due to time lags in the land system
2019. Nature climate change, 9, 203–208. doi:10.1038/s41558-019-0400-5
Navigating pluralism: Understanding perceptions of the ecosystem services concept
2019. Ecosystem Services, 36, Art. Nr.: 100892. doi:10.1016/j.ecoser.2019.01.004
Evaluation and Calibration of an Agent Based Land use Model Using Remotely Sensed Land Cover and Primary Productivity Data
2018. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, E, July 22-27, 2018, 7472–7475, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IGARSS.2018.8518023
Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide
2018. Global change biology, 24 (7), 2791–2809. doi:10.1111/gcb.14110
Modelling regional cropping patterns under scenarios of climate and socio-economic change in Hungary
2018. The science of the total environment, 622-623, 1611–1620. doi:10.1016/j.scitotenv.2017.10.038
Modelling dynamic effects of multi-scale institutions on land use change
2018. Regional environmental change. doi:10.1007/s10113-018-1424-5
Empirical evidence for the diffusion of knowledge in land use change
2018. Journal of land use science, 1–44. doi:10.1080/1747423X.2018.1515995
Modelling feedbacks between human and natural processes in the land system
2018. Earth System Dynamics, 9 (2), 895–914. doi:10.5194/esd-9-895-2018
Improving the representation of adaptation in climate change impact models
2018. Regional environmental change. doi:10.1007/s10113-018-1328-4
Food supply and bioenergy production within the global cropland planetary boundary
2018. (P. C. Struik, Ed.) PLoS one, 13 (3), Art. Nr.: e0194695. doi:10.1371/journal.pone.0194695
Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use?
2017. Global food security, 15, 22–32. doi:10.1016/j.gfs.2017.04.001
The importance of socio-ecological system dynamics in understanding adaptation to global change in the forestry sector
2017. Journal of environmental management, 196, 36–47. doi:10.1016/j.jenvman.2017.02.066
The effect of forest owner decision-making, climatic change and societal demands on land-use change and ecosystem service provision in Sweden
2017. Ecosystem Services, 23, 174–208. doi:10.1016/j.ecoser.2016.12.003
The future potential for wine production in Scotland under high-end climate change
2017. Regional environmental change, 1–10. doi:10.1007/s10113-017-1240-3
Behavioral models of climate change adaptation and mitigation in land-based sectors
2017. Wiley interdisciplinary reviews / Climate change, 8 (2), Art.Nr. e448. doi:10.1002/wcc.448
Lifestyle, habitat and farmers’ risk of exposure to tick bites in an endemic area of tick-borne diseases in Hungary
2017. Zoonoses and public health, 65 (1), e248-e253. doi:10.1111/zph.12413
Correction to: the relative importance of subjective and structural factors for individual adaptation to climate change by forest owners in Sweden
2017. Regional environmental change, 1. doi:10.1007/s10113-017-1233-2
The relative importance of subjective and structural factors for individual adaptation to climate change by forest owners in Sweden
2017. Regional environmental change, 1–10. doi:10.1007/s10113-017-1218-1
Relating farmer’s perceptions of climate change risk to adaptation behaviour in Hungary
2017. Journal of environmental management, 185, 21–30. doi:10.1016/j.jenvman.2016.10.051
To what extent are land resource managers preparing for high-end climate change in Scotland?
2017. Climatic change, 141 (2), 181–195. doi:10.1007/s10584-016-1881-0
Integrated modelling of urban spatial development under uncertain climate futures : A case study in Hungary
2017. Environmental modelling & software, 96, 251–264. doi:10.1016/j.envsoft.2017.07.005
Modelling population structure in the context of urban land use change in Europe
2017. Regional environmental change, 1–11. doi:10.1007/s10113-017-1194-5
Losses, inefficiencies and waste in the global food system
2017. Agricultural systems, 153, 190–200. doi:10.1016/j.agsy.2017.01.014
Human appropriation of land for food : The role of diet
2016. Global environmental change, 41, 88–98. doi:10.1016/j.gloenvcha.2016.09.005
Climate change impact modelling needs to include cross-sectoral interactions
2016. Nature climate change, 6 (9), 885–890. doi:10.1038/nclimate3039
A model of environmental institutions and their adaptive actions in the Swedish forestry sector
2016. Environmental science & policy
Modelling the seasonality of Lyme disease risk and the potential impacts of a warming climate within the heterogeneous landscapes of Scotland
2016. Interface, 13 (116), Art. Nr. 20160140. doi:10.1098/rsif.2016.0140
Land managers’ behaviours modulate pathways to visions of future land systems
2016. Regional environmental change, 1–15. doi:10.1007/s10113-016-0999-y
Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework
2016. Earth System Dynamics, 7 (4), 893–915. doi:10.5194/esd-7-893-2016
Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison
2016. Global change biology, 22 (12), 3967–3983. doi:10.1111/gcb.13337
Assessing uncertainties in land cover projections
2016. Global change biology, 23 (2), 767–781. doi:10.1111/gcb.13447
Applying Occam’s razor to global agricultural land use change
2016. Environmental modelling & software, 75, 212–229. doi:10.1016/j.envsoft.2015.10.015
Analysing uncertainties in climate change impact assessment across sectors and scenarios
2015. Climatic change, 128 (3-4), 293–306. doi:10.1007/s10584-014-1133-0
Modelling farmer decision-making to anticipate tradeoffs between provisioning ecosystem services and biodiversity
2015. Agricultural systems, 137, 12–23. doi:10.1016/j.agsy.2015.03.006
Exploring climate change vulnerability across sectors and scenarios using indicators of impacts and coping capacity
2015. Climatic change, 128 (3-4), 339–354. doi:10.1007/s10584-014-1162-8
Direct and indirect impacts of climate and socio-economic change in Europe: a sensitivity analysis for key land- and water-based sectors
2015. Climatic change, 128 (3-4), 261–277. doi:10.1007/s10584-014-1313-y
Cross-sectoral impacts of climate change and socio-economic change for multiple, European land- and water-based sectors
2015. Climatic change, 128 (3-4), 279–292. doi:10.1007/s10584-014-1239-4
Assessing policy robustness of climate change adaptation measures across sectors and scenarios
2015. Climatic change, 128 (3-4), 395–407. doi:10.1007/s10584-014-1240-y
Rapid assessment of historic, current and future habitat quality for biodiversity around UK Natura 2000 sites
2015. Environmental conservation, 42 (01), 31–40. doi:10.1017/S0376892914000137
Evaluating potential policies for the UK perennial energy crop market to achieve carbon abatement and deliver a source of low carbon electricity
2015. Biomass and bioenergy. doi:10.1016/j.biombioe.2015.04.025
The Use of Spatial Econometrics, Stakeholder Analysis and Qualitative Methodologies in The Evaluation of Rural Development Policy
2015. Journal of environmental assessment policy and management, 17 (02), 1550023. doi:10.1142/S1464333215500234
Recentralisation through regionalisation in the implementation of Rural Development Policy in Scotland
2015. Journal of environmental planning and management, 58 (9), 1666–1689. doi:10.1080/09640568.2014.942726
Exploring scenario and model uncertainty in cross-sectoral integrated assessment approaches to climate change impacts
2015. Climatic change, 132 (3), 417–432. doi:10.1007/s10584-014-1211-3
Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy
2015. Global environmental change, 35, 138–147. doi:10.1016/j.gloenvcha.2015.08.011
Multilevel Governance, Decentralization and Environmental Prioritization: How is it working in rural development policy in Scotland?: Multilevel Governance and Rural Development Policy
2015. Environmental policy and governance, 25 (6), 399–411. doi:10.1002/eet.1690
Transitions in European land-management regimes between 1800 and 2010
2015. Land use policy, 49, 53–64. doi:10.1016/j.landusepol.2015.07.003
Modelling the effect of habitat fragmentation on climate-driven migration of European forest understorey plants
2015. Diversity & distributions, 21 (12), 1375–1387. doi:10.1111/ddi.12370
Characterising forest owners through their objectives, attributes and management strategies
2015. European journal of forest research, 134 (6), 1027–1041. doi:10.1007/s10342-015-0907-x
Combining agent functional types, capitals and services to model land use dynamics
2014. Environmental modelling & software, 59, 187–201. doi:10.1016/j.envsoft.2014.05.019
Locating household profiles in a polycentric region for operational agent-based modelling
2014. Environment & planning / B, 41 (1), 163 – 184. doi:10.1068/b37072
An open framework for agent based modelling of agricultural land use change
2014. Environmental modelling & software, 61, 19–38. doi:10.1016/j.envsoft.2014.06.027
A simple global food system model
2014. Agricultural economics, 60 (4), 188–197
Spatial analysis of agri-environmental policy uptake and expenditure in Scotland
2014. Journal of environmental management, 133, 104–115. doi:10.1016/j.jenvman.2013.11.038
Cost and potential of carbon abatement from the UK perennial energy crop market
2014. Global change biology / Bioenergy, 6 (2), 156–168. doi:10.1111/gcbb.12148
Strategies for Sustainable Urban Development and Urban-Rural Linkages
2014. European journal of spatial development, 1–26
Identifying the Factors That Influence Farmer Participation in Environmental Management Practices in Switzerland
2014. Human ecology, 42 (6), 951–963. doi:10.1007/s10745-014-9701-5
Experiments in Globalisation, Food Security and Land Use Decision Making
2014. PLoS one, 9 (12), Art.Nr. e114213. doi:10.1371/journal.pone.0114213
Towards decision-based global land use models for improved understanding of the Earth system
2014. Earth System Dynamics, 5 (1), 117–137. doi:10.5194/esd-5-117-2014
Global models of human decision-making for land-based mitigation and adaptation assessment
2014. Nature climate change, 4, 550–557. doi:10.1038/NCLIMATE2250
Probabilistic estimation of future emissions of isoprene and surface oxidant chemistry associated with land use change in response to growing food needs
2013. Atmospheric chemistry and physics, 13 (11), 5451–5472. doi:10.5194/acp-13-5451-2013
Agent-based modelling of land use dynamics and residential quality of life for future scenarios
2013. Environmental modelling & software, 46, 75–89. doi:10.1016/j.envsoft.2013.02.011
Modelling the perennial energy crop market: the role of spatial diffusion
2013. Interface, 10 (88), 1–10. doi:10.1098/rsif.2013.0656
Strengthening conceptual foundations: Analysing frameworks for ecosystem services and poverty alleviation research
2013. Global environmental change, 23 (5), 1098–1111. doi:10.1016/j.gloenvcha.2013.04.002
A spatially explicit scenario-driven model of adaptive capacity to global change in Europe
2013. Global environmental change, 23 (5), 1211–1224. doi:10.1016/j.gloenvcha.2013.03.008
Scenarios for investigating risks to biodiversity
2012. Global ecology and biogeography, 21 (1), 5–18. doi:10.1111/j.1466-8238.2010.00620.x
From actors to agents in socio-ecological systems models
2012. Philosophical transactions of the Royal Society of London / B, 367 (1586), 259–269. doi:10.1098/rstb.2011.0187
Modelling the impacts of land system dynamics on human well-being: Using an agent-based approach to cope with data limitations in Koper, Slovenia
2012. Computers, environment and urban systems, 36 (2), 164–176. doi:10.1016/j.compenvurbsys.2011.10.002
Challenges for land system science
2012. Land use policy, 29 (4), 899–910. doi:10.1016/j.landusepol.2012.01.007
A qualitative method for the spatial and thematic downscaling of land-use change scenarios
2011. Environmental science & policy, 14 (3), 268–278. doi:10.1016/j.envsci.2010.11.003
Conceptualising the analysis of socio-ecological systems through ecosystem services and agent-based modeling
2011. Journal of land use science, 6 (2-3), 83–99. doi:10.1080/1747423X.2011.558600
A need for planned adaptation to climate change in the wine industry
2011. Environmental research letters, 6 (3), Art.Nr.: 031001. doi:10.1088/1748-9326/6/3/031001
Representing human behaviour and decisional processes in land system models as an integral component of the earth system
2011. Global Environmental Change, 21, 840–843. doi:10.1016/j.gloenvcha.2011.04.010
How Personal Judgment Influences Scenario Development: an Example for Future Rural Development in Europe
2010. Ecology and society, 15 (2), 27
Developing qualitative scenario storylines for environmental change assessment
2010. Wiley interdisciplinary reviews / Climate change, 1 (4), 606–619. doi:10.1002/wcc.63
Research needs for incorporating the ecosystem service approach into EU biodiversity conservation policy
2010. Biodiversity and conservation, 19 (10), 2979–2994. doi:10.1007/s10531-010-9853-6
Ecosystem services and biodiversity conservation: concepts and a glossary
2010. Biodiversity and conservation, 19 (10), 2773–2790. doi:10.1007/s10531-010-9834-9
Dynamic properties of complex adaptive ecosystems: implications for the sustainability of service provision
2010. Biodiversity and conservation, 19 (10), 2843–2853. doi:10.1007/s10531-010-9892-z
A conceptual framework to assess the effects of environmental change on ecosystem services
2010. Biodiversity and conservation, 19 (10), 2823–2842. doi:10.1007/s10531-010-9838-5
Competition for land
2010. Philosophical transactions of the Royal Society of London / B, 365 (1554), 2941–2957. doi:10.1098/rstb.2010.0127
The Tyndall Coastal Simulator and Interface
2009. Coastal Engineering 2008 : Proceedings of the 31st International Conference (ICCE), Hamburg, Germany, 31 August - 5 September 2008. Ed.: J. Smith, 4341–4353, World Scientific Publishing
Land-use and climate change within assessments of biodiversity change: A review
2009. Global environmental change, 19 (2), 306–315. doi:10.1016/j.gloenvcha.2008.09.007
Land use and climate change in the UK
2009. Land use policy, 26 (Supplement 1), S160–S169. doi:10.1016/j.landusepol.2009.09.007
Integrating VR, GIS and Agent Based Model to Simulate Regional Residential Demand Changes
2009. 2nd IEEE International Conference on Computer Science and Information Technology (ICCSIT) , Beijing, China ; 8 - 11 Aug. 2009. Vol. 4. Hrsg.: W. Li, 388–392, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICCSIT.2009.5234525
Quantifying the Contribution of Organisms to the Provision of Ecosystem Services
2009. BioScience, 59 (3), 223–235. doi:10.1525/bio.2009.59.3.7
Space-time patterns of urban sprawl, a 1D cellular automata and microeconomic approach
2009. Environment and planning / B, 36 (6), 968–988. doi:10.1068/b34009
An agent-based approach to model future residential pressure on a regional landscape
2009. Landscape ecology, 24 (9), 1237–1254. doi:10.1007/s10980-009-9378-0
The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern
2008. Geomorphology, 98 (3-4), 213–226. doi:10.1016/j.geomorph.2006.12.027
Exposure of European biodiversity to changes in human-induced pressures
2008. Environmental science & policy, 11 (1), 38–45. doi:10.1016/j.envsci.2007.07.002
The concepts and development of a participatory regional integrated assessment tool
2008. Climatic change, 90 (1-2), 5–30. doi:10.1007/s10584-008-9453-6
Mitigation, Adaptation, and the Threat to Biodiversity
2008. Conservation biology, 22 (5), 1352–1355. doi:10.1111/j.1523-1739.2008.01042.x
Development and application of participatory integrated assessment software to support local/regional impact and adaptation assessmentDevelopment and application of participatory integrated assessment
2008. Climatic change, 90 (1-2), 1–4. doi:10.1007/s10584-008-9452-7
Assessing scale effects on modelled soil organic carbon contents as a result of land use change in Belgium
2008. Soil use and management, 24 (1), 8–18. doi:10.1111/j.1475-2743.2007.00133.x
Exploring spatial data uncertainties in land-use change scenarios
2008. International journal of geographical information science, 22 (9), 1013–1030. doi:10.1080/13658810701812836
Modelling pink-footed goose (Anser brachyrhynchus) wintering distributions for the year 2050: potential effects of land-use change in Europe
2008. Diversity & distributions, 14 (5), 721–731. doi:10.1111/j.1472-4642.2008.00476.x
Exploring a spatio-dynamic neighbourhood-based model of residential behaviour in the Brussels periurban area
2007. International journal of geographical information science, 19, 103–123. doi:10.1080/13658810410001713371
The effect of soil erosion on Europe’s crop yields
2007. Ecosystems, 10 (7), 1209–1219. doi:10.1007/s10021-007-9090-3
The consequences of interpolating or calculating first on the simulation of pesticide leaching at the regional scale
2007. Geoderma, 137 (3-4), 414–425. doi:10.1016/j.geoderma.2006.09.004
Spatial analysis and modelling of land use distributions in Belgium
2007. Computers, environment and urban systems, 31 (2), 188–205. doi:10.1016/j.compenvurbsys.2006.06.004
Projecting future N2O emissions from agricultural soils in Belgium
2007. Global change biology, 13, 18–27. doi:10.1111/j.1365-2486.2006.01273.x
Including spatial variability in Monte Carlo simulations of pesticide leaching
2007. Environmental science & technology, 41 (21), 7444–7450. doi:10.1021/es0714639
Crop models, CO2, and climate change
2007. Science Letters, 315 (5811), 459–460. doi:10.1126/science.315.5811.459c
Spatial configurations in a periurban city. A cellular automata-based microeconomic model
2007. Regional science and urban economics, 37 (5), 542–567. doi:10.1016/j.regsciurbeco.2007.01.005
Environmental change and the phenology of European aphids
2007. Global change biology, 13 (8), 1550–1564. doi:10.1111/j.1365-2486.2007.01394.x
Projected Changes in Terrestrial Carbon Storage in Europe under Climate and Land-use Change, 1990–2100
2007. Ecosystems, 10 (3), 380–401. doi:10.1007/s10021-007-9028-9
What can scenario modelling tell us about future European scale agricultural land use, and what not?
2006. Environmental science & policy, 9 (2), 148–162. doi:10.1016/j.envsci.2005.11.008
The vulnerability of ecosystem services to land use change
2006. Agriculture, ecosystems & environment, 114 (1), 69–85. doi:10.1016/j.agee.2005.11.025
The limitations of spatial land use data in environmental analysis
2006. Environmental science & policy, 9 (2), 174–188. doi:10.1016/j.envsci.2005.11.006
Socio-economic scenario development for the assessment of climate change impacts on agricultural land use : a pairwise comparison approach
2006. Environmental science & policy, 9 (2), 101–115. doi:10.1016/j.envsci.2005.11.002
Socio-economic aspect of climate change impact on food production sources and ecosystems in Europe
2006. Cereal research communications, 34 (1), 781–784. doi:10.1556/CRC.34.2006.1.194
Scenario based studies of future land use in Europe
2006. Agriculture, ecosystems & environment, 114 (1), 1–6. doi:10.1016/j.agee.2005.11.023
Projected changes in mineral soil carbon of European forests, 1990-2100
2006. Canadian journal of soil science, 86, 159–169
Scenarios of Future Urban Land Use in Europe
2006. Environment & planning / B, 33 (4), 619–636. doi:10.1068/b31079
Future environmental change impacts on rural land use and biodiversity: a synthesis of the ACCELERATES project
2006. Environmental science & policy, 9 (2), 93–100. doi:10.1016/j.envsci.2005.11.001
Assessing the vulnerability of agricultural land use and species to climate change and the role of policy in facilitating adaptation
2006. Environmental science & policy, 9 (2), 189–204. doi:10.1016/j.envsci.2005.11.004
Are agricultural land use patterns influenced by farmer imitation?
2006. Agriculture, ecosystems & environment, 115 (1-4), 113–127. doi:10.1016/j.agee.2005.12.019
A statistical method to downscale aggregated land use data and scenarios
2006. Journal of land use science, 1 (2), 63–82. doi:10.1080/17474230601058302
A coherent set of future land use change scenarios for Europe
2006. Agriculture, ecosystems & environment, 114 (1), 57–68. doi:10.1016/j.agee.2005.11.027
Discriminating between point and non-point sources of atrazine contamination of a sandy aquifer
2006. The science of the total environment, 362 (1-3), 124–142. doi:10.1016/j.scitotenv.2005.06.010
Variability in regional wheat yields as a function of climate, soil and economic variables : Assessing the risk of confounding
2005. Agriculture, ecosystems & environment, 110 (3-4), 195–209. doi:10.1016/j.agee.2005.04.016
Soil erosion as a driver of land-use change
2005. Agriculture, ecosystems & environment, 105 (3), 467–481. doi:10.1016/j.agee.2004.07.009
Spatial autocorrelation as a tool for identifying the geographical patterns of aphid annual abundance
2005. Agricultural and forest entomology, 7 (1), 31–43. doi:10.1111/j.1461-9555.2005.00245.x
Sensitivity of the SWAT model to the soil and land use data parametrisation: a case study in the Thyle catchment, Belgium
2005. Ecological modelling, 187 (1), 27–39. doi:10.1016/j.ecolmodel.2005.01.025
Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080
2005. Global change biology, 11 (12), 2141–2152. doi:10.1111/j.1365-2486.2005.001075.x
Geographical location, climate and land use influences on the phenology and numbers of the aphid, Myzus persicae, in Europe
2005. Journal of biogeography, 32 (4), 615–632. doi:10.1111/j.1365-2699.2005.01190.x
Future scenarios of European agricultural land use. II: projecting changes in cropland and grassland
2005. Agriculture, ecosystems & environment, 107 (2-3), 117–135. doi:10.1016/j.agee.2004.12.002
Future scenarios of European agricultural land use: I. Estimating changes in crop productivity
2005. Agriculture, ecosystems & environment, 107 (2-3), 101–116. doi:10.1016/j.agee.2004.12.003
Estimating annual N2O emissions from agricultural soils in temperate climates
2005. Global change biology, 11 (10), 1701–1711. doi:10.1111/j.1365-2486.2005.01025.x
Carbon sequestration potential in European croplands has been overestimated
2005. Global change biology, 11 (12), 2153–2163. doi:10.1111/j.1365-2486.2005.01052.x
Analysis of spatial patterns at a geographical scale over north-western Europe from point-referenced aphid count data
2005. Bulletin of entomological research, 95 (1), 47–56. doi:10.1079/BER2004338
ALARM: Assessing LArge-scale environmental Risks for biodiversity with tested Methods
2005. Gaia, 14 (1), 69–72. doi:10.14512/gaia.14.1.20
A Regional, Multi-sectoral And Integrated Assessment Of The Impacts Of Climate And Socio-economic Change In The Uk Part II. Results
2005. Climatic change, 71 (1-2), 43–73. doi:10.1007/s10584-005-5956-6
A Regional, Multi-Sectoral And Integrated Assessment Of The Impacts Of Climate And Socio-Economic Change In The Uk Part I. Methodology
2005. Climatic change, 71 (1-2), 9–41. doi:10.1007/s10584-005-5927-y
Ecosystem service supply and vulnerability to global change in Europe
2005. Science, 310 (5752), 1333–1337. doi:10.1126/science.1115233
Carbon sequestration in the agricultural soils of Europe
2004. Geoderma, 122 (1), 1–23. doi:10.1016/j.geoderma.2004.01.021
Belgium’s CO2 mitigation potential under improved cropland management
2004. Agriculture, ecosystems & environment, 103 (1), 101–116. doi:10.1016/j.agee.2003.10.010
The crop productivity - erosion relationship: an analysis based on experimental work
2004. Catena, 57 (1), 55–76. doi:10.1016/j.catena.2003.07.002
Modelling the spatial distribution of agricultural land use at the regional scale
2003. Agriculture, ecosystems & environment, 95 (2-3), 465–479. doi:10.1016/S0167-8809(02)00217-7
Delivering a decision support system tool to a river contract: a way to implement the participatory approach principle at the catchment scale?
2003. Physics and chemistry of the earth, 28 (12-13), 547–554. doi:10.1016/S1474-7065(03)00093-7
Are agricultural land use models able to predict changes in land use intensity?
2000. Agriculture, ecosystems & environment, 82 (1-3), 321–331. doi:10.1016/S0167-8809(00)00235-8
Modelling wheat yield responses to soil and climate variability at the regional scale
1999. Climate research, 11 (3), 209–220
Climate change and agricultural soils: impacts and adaptation
1999. Climatic change, 43 (4), 683–709. doi:10.1023/A:1005597216804
Potential climate change effects on the distribution of agricultural grassland in England and Wales
1996. Soil use and management, 12 (1), 44–51
Agro-climatic Change and European Soil Suitability: regional modelling at monthly time-steps
1996. International agrophysics, 10 (3), 155–170
ACCESS: A spatially distributed soil water and crop development model for climate change research
1996. Aspects of applied biology, 45, 85–92
Soils and greenhouse gases: management for mitigation
1995. Chemistry & industry, 16 (16), 647–650
Land evaluation modelling to assess the effects of climate change on winter wheat potential in England and Wales
1995. The journal of agricultural science, 124 (2), 159–172. doi:10.1017/S0021859600072841
The potential effects of climate-change on autumn soil tillage opportunities in England and Wales
1994. Soil & tillage research, 32 (4), 275–289. doi:10.1016/0167-1987(94)00430-M
The impact of dry years on crop water requirements in Eastern England
1993. Water and environment journal, 7 (5), 497–504. doi:10.1111/j.1747-6593.1993.tb00878.x
A soil and agroclimatic model for estimating machinery workdays: the basic model and climatic sensitivity
1993. Soil & tillage research, 26 (3), 179–191. doi:10.1016/0167-1987(93)90043-O
A review of soil workability models and their limitations in temperate regions
1993. Soil use and management, 9 (1), 15–20. doi:10.1111/j.1475-2743.1993.tb00921.x